考试周刊杂志社官网
当前位置:考试周刊杂志社 > 论文资源 > 正文

探析建模思想 落实核心素养

发布时间:2021-03-08 人气:

  摘 要:新课改的提出并逐步深入,要求当下的教育者明确学生在课堂中的主体地位,在传递学生知识的同时,落实学生的核心素养。高中数学是一门非常重要的学科,该学科考查的是学生基础知识的掌握能力、思维的应变能力。学生想要学好该门课程,就必须要学会采用各种数学思想进行解题。其中建模则是数学学习过程中较为普遍的一个思想,基于这类思想,可以帮助学生化抽象为具体,化难为易,逐步提高学生学习的自信。文章就建模思想以及建模思想在解高考数学题中应用的意义进行阐述,分析高中阶段学生在解数学题所面临的现状,提出在解高考数学题中融入数学建模思想的策略。
  关键词:建模思想;高考数学题;意义;现状;应用
  一、 引言
  建模思想是数学学习过程中学生的核心素养之一,通过把题目的原型进行分析、提炼,建立图形、数字或者是符合数学的模型,继而基于所学习的数学工具对数学模型解答,最终将结果和原型之间相互比较或者扩充,获得答案。近年来的数学高考题目中采用建模思想解答的題目非常多,也是学生在学习过程中必须要学会的一种思想。因此,加强对数学建模思想在高考数学题目中的研究就显得尤其必要。
  二、 建模思想以及建模思想在解高考数学题中应用的意义
  (一)建模思想的基本概念
  建模思想就是基于原有的现实问题,对其进行分析并建立数学的模型,基于所学习的数学知识,对数学模型进行解答,继而解决实际的题目。通常建模会分为五个过程:分别是模型的准备,在这个阶段需要深入探索问题的背景,问题的意义,在问题中的各种要素;假设模型,根据对象的基本特征以及建模的目的,简化问题,适当提出假设;建立模型,在假设的基础上,用数学工具将各个变量之间的数学关系进行刻画,构建数学模型结构;解答模型,根据题中的各种数字资料,对数学模型进行解答;分析模型,将解答的结果和题中的要求进行对比和分析,以验证模型建立的合理性。如果实物和模型之间比较吻合,那么则需要给计算结果赋予含义。如果模型和实际吻合度不高,则需要修改假设,再次建模。
  (二)建模思想在解高考数学题中应用的意义
  1. 有利于帮助学生突破较难的数学题目
  数学一直是高中阶段比较基础且重要的学科,在高考中数学的分值也占据较大。很多学生语文、英语成绩都还可以,但是数学却很难提升。这和数学这门课程本身的性质有关,其并不是一门光靠死记硬背就可以获得好成绩的学科,需要学生掌握一定的数学思维。建模是数学解题非常重要的思想,在高考题目中很多难题都可以通过建模的方式化难为易,化抽象为具体,帮助学生突破数学考试中较难的题目,获得高分数。
  2. 有利于提高学生解题的自信心
  高考一张试卷从填空题、选择题、解答题,每一道题目都需要认真思索,而高考是决定学生这十几年寒窗苦读是否一战成名的关键时刻。如果学生在解答题目时总是遇到拦路虎,必然会影响解题的积极性,甚至会自暴自弃,最终也很难获得好的成绩。相反,融入建模思想,即使遇到较难的题目,学生也可以通过建模进行解决,当解答越来越顺畅时,学生的自信心也会爆棚,考试的成绩必然也非常理想。
  3. 有利于落实学生的数学核心素养
  建模思想属于数学学科的核心素养之一。教师在教学的过程中将建模思想渗透其中,不仅能够提高学生对数学学习和探究的兴趣,还能够帮助学生有效解题,培养学生数学思维,促进学生在数学领域的提升。
  三、 高中阶段学生在解数学题所面临的现状
  第一,学生的畏难心理严重。高中阶段的数学知识是非常复杂的,无论是概念的学习还是题目的解答,都不是通过表象或者简单的记忆就可以掌握的。如果学生在课堂上未专心听讲,那么在解题时看到题目就会产生一种畏难的心理,在第一步就失去了解题的信心,那么想要完整的将整个数学题目进行解题就显得更加的困难。第二,建模思想应用存在问题。建模思想是数学解题过程中使用的较多的一种思想。很多学生在教师的引导之下,都会将实际问题通过建模的方式转变为数学问题。但是在转变完数学问题之后,学生又并不能利用所学习的知识对题目很好地进行解答,这就使得建模思想停留在建立模型的第一步,很难真正地达到解题的目的。
  四、 在解高考数学题中融入数学建模思想的策略
  (一)基于建模思想,解答函数数学问题
  函数知识一直是高中数学教学中的重点,也是难点。通过在高考题目中函数的问题并不是直接进行阐述,而是将函数的内容融入实际问题中,同时还会包含多个变量,以培养学生的数学思维,提高学生对数学的认知。例如这样一道题目:老张想要建造一个池塘,采用活水囤鱼的技术,已知平均每条鱼在生长时的速度每年y千克,正好是养殖密度x的函数。如果x小于每平方米4条,那么y则是每年2千克。如果x大于4小于等于20,那么y和x恰好可以构成一次函数。如果x大于每立方米20条,那么鱼塘就会缺氧,而此时的y值也会是0。根据已知条件求两个问题。第一,当x大于4且小于等于20时,y和x属于怎样的函数关系。第二,y想要达到最大,x应该取何值?通过阅读和分析这道题目可以发现,该题目涉及一次函数的相关知识,可以通过建模的思想将鱼塘问题转变为一次函数的问题,继而利用所学习的函数知识进行解答,并求出最恰当的值,最终根据实际情况分析并检验。在这个例题中,从条件可以得到这样一个公式,,y=ax+b,同时得知在(4,20]这个区域内其为减函数。通过建立模型,并解答,得到当x大于4且小于等于20时,函数y=(-1/8)x+5/2。接着根据函数解析式,对其单调性进行分析,当x等于10时,y可以达到最大值为12.5。将其带入到实际问题中,便可以得到最终答案。
  (二)基于建模思想,解决排列组合问题
  在生活中包含着很多和排列组合相关的问题,这些问题内部都是各种数学思想的集合,因为其比较抽象和独特,在数学高考题中考查得也较多。如果学生能够理解题目中的各种数量关系,通过构建位置、填格子等方式进行解答,便可以很好的解决问题。如这样一道高考例题:如果将6个人排成一排,那么甲乙两人不相邻的排法一共有多少种。这类题目可以建立排位置的模型,采用间接或者直接法进行解答。如直接法解答则是甲、乙一共排法是10A22=20种,将其他4个人排除,一共的排法是

相关推荐